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The fingering instabilities in vertical miscible displacement flows in porous media 
driven by both viscosity and density contrasts are studied using linear stability analysis 
and direct numerical simulations. The conditions under which vertical flows are 
different from horizontal flows are derived. A linear stability analysis of a sharp 
interface gives an expression for the critical velocity that determines the stability of the 
flow. It is shown that the critical velocity does not remain constant but changes as the 
two fluids disperse into each other. In a diffused profile, the flow can develop a 
potentially stable region followed downstream by a potentially unstable region or vice 
versa depending on the flow velocity, viscosity and density profiles, leading to the 
potential for ‘reverse’ fingering. As the flow evolves into the nonlinear regime, the 
strength and location of the stable region changes, which adds to the complexity and 
richness of finger propagation. The flow is numerically simulated using a Hartley- 
transform-based spectral method to study the nonlinear evolution of the instabilities. 
The simulations are validated by comparing to experiments. Miscible displacements 
with linear density and exponential viscosity dependencies on concentration are 
simulated to study the effects of stable zones on finger propagation. The growth rates 
of the mixing zone are parametrically obtained for various injection velocities and 
viscosity ratios. 

1. Introduction 
In a displacement process the interface between the two fluids is often unstable when 

a fluid of higher mobility displaces a fluid of lower mobility and the resulting 
instabilities develop into viscous fingers. Since the early experiments and analysis of 
Hill (1952), there has been a tremendous growth in the literature published on viscous 
fingering instabilities (see Homsy 1987 for a detailed review). The problem finds 
application in enhanced oil recovery, groundwater flows, fixed bed regeneration, 
geothermal wells, etc. Besides its practical applications, the nonlinear dynamics 
through which the instabilities evolve are of interest from a fluid mechanics point of 
view as well. 

In most applications, viscous fingering instabilities are undesirable as they result in 
a reduced sweep efficiency of the displacement process. Any process aimed toward 
eliminating the instabilities or controlling the growth rate of the viscous fingers is of 
technological importance. Manickam & Homsy (1 994) analysed horizontal miscible 
displacements with fluid pairs that have a non-monotonic viscosity-concentration 
relationship and found that non-monotonocities in the spatial variation of viscosity are 
effective in restricting the nonlinear growth of the viscous fingers. When the viscosity 
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variation is non-monotonic, the flow develops an unstable zone followed downstream 
by a stable zone, which then acts as a barrier to the growth of the instabilities. There 
are other situations where a potentially stable region develops adjacent to a potentially 
unstable region, for example in ' Water-alternate-Gas ' (WAG) schemes where the 
concentration of the injected fluid is varied to achieve a spatially non-monotonic 
viscosity profile (Christie, Muggeridge & Barley 1991). The works of Dumore (1964) 
and Rogerson & Meiberg (1993) have shown that we can obtain a similar situation in 
vertical displacement flows driven by both viscosity and density contrasts. Here we 
analyse vertical displacements in the presence gravity and examine the effects of the 
stable region on finger propagation. 

Dumore (1964) observed that under suitable conditions, downward displacement 
flows with combined gravity and viscosity effects develop transition zones that are 
partly stable and partly unstable. Using arguments based on pressure gradients he 
derived a theoretical limit on the injection velocity at which the transition zone 
becomes partly unstable. Coskuner & Bentsen (1990) solved the linear stability 
problem by approximate methods to obtain a local stability criterion equivalent to that 
of Dumore (1964). Hickernell & Yortsos (1986) studied displacement processes in the 
absence of dispersion and showed that mobility profiles with any segment of decreasing 
mobility are unstable in the linear regime. They included the effects of gravity and 
obtained a critical injection velocity for marginally stable displacement in the small- 
wavenumber limit. Chikhliwala, Huang & Yortsos (1988) further confirmed that non- 
dispersive flows with any segment of decreasing mobility are unstable regardless of the 
endpoint mobility values. 

Dumore (1964) carried out experiments on downward displacements to test his 
theoretical stability limits. His experiments confirm his theoretical finding that the 
stability of vertical displacements depends not merely on the endpoint values of density 
and viscosity but on the details of the density - and viscosity - concentration 
relationships. Finally we mention the vertical displacement experiments of Tiffin & 
Kremesec (1986), for which evaluation of stability based on endpoint properties is 
misleading and inaccurate. Tiffin & Kremesec attributed the curious results in their 
downward displacement flows to non-ideal density behaviour. 

The numerical work of Rogerson & Meiberg (1993) further shows that in vertical 
displacements with monotonic viscosity profiles, the presence of density contrasts can 
introduce potentially stable zones followed downstream by potentially unstable zones 
or vice versa. Rogerson & Meiberg (1993) found that vertical flows with certain 
combinations of viscosity and density variations with concentration can develop 
locally stable regions, analogous to what Manickam & Homsy (1994) achieved with 
non-monotonic viscosity profiles in horizontal displacements. Their work demonstrates 
that density contrasts provide a means to control or restrict the growth of fingers in 
displacements with monotonic viscosity profiles. 

In this paper, we analyse vertical displacement flows both in the linear and nonlinear 
regimes and explore the surprising similarities between vertical flows with monotonic 
viscosity profiles and horizontal flows with non-monotonic viscosity profiles. We first 
give a general treatment of the vertical miscible displacement flows with monotonic 
density and viscosity profiles and investigate when and how they differ from the 
horizontal displacements with neutrally buoyant fluids. We next perform a linear 
stability analysis of vertical displacements, with particular emphasis on the effects of 
dispersion on the stability of the flow. We use the results of the linear theory to identify 
regions that are potentially stable and those that are potentially unstable. We present 
the results of numerical simulations of vertical displacements with combinations of 
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viscosity and density relationships that develop locally stable and unstable zones, and 
study the nonlinear dynamics. Finally, we demonstrate the possibility of ‘reverse 
fingering’, where the displaced fluid fingers through the displacing fluid more easily 
than vice versa, through illustrative examples. 

2. Problem description 
A schematic of the vertical displacement flow is shown in figure 1. A fluid of viscosity 

p1 and density p1 displaces another fluid of viscosity p2 and density p2 with an injection 
velocity U along the direction of gravity. We work in a reference frame moving with 
the injection velocity U, and in the moving reference frame the governing equations in 
two-dimensions are 

au av  -+- = 0, 
ax ay 

- aP = -p(u+ U)+p,  
ax 

In the above equations ,u is the ratio of the viscosity to the constant permeability of the 
porous medium, which is simply referred to as viscosity. The viscosity is scaled with the 
viscosity of the displacing fluid p1 and the density is scaled with Ap = p2-p1. The 
velocity, length and time are scaled with K h ,  D/ V,, and D/ V:, respectively, where the 
characteristic velocity Th = JAp( g/,uu,. We choose to scale the velocities with V,, rather 
than the injection velocity U because in the presence of density contrasts we can have 
a non-trivial flow even when U = 0. The concentration of the fluid at x = - 00 is taken 
to be 1 and that at x = + co is taken to be 0. All the velocities in (1) are volume- 
averaged and (1 a)  represents conservation of volume. If mass-averaged velocities 
instead of volume-averaged velocities are used, then the velocity field will not in general 
be divergent-free as noted by Joseph (1990). However, an appeal to Boussinesq 
approximation establishes an equivalence between volume- and mass-averaged 
formulations. In addition, a variety of comparisons between predictions based on (1) 
and laboratory experiments (Christie et al. 1989; Tchelepi et al. 1993, and the 
validation studies of 0 5.1) confirm that the governing equations (1) adequately describe 
the physics of the displacement process. 

We assume that the density varies linearly with concentration. Most fluid pairs have 
a linear density-concentration relationship and any deviations from a linear 
relationship is due to volume change of mixing. The conservation of volume equation 
(1 a)  assumes that there is no volume change of mixing and thus a linear density profile 
is consistent with this assumption. We use the following normalized linear density 
profile : 
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FIGURE 1. Schematic of vertical miscible displacement. 

When p1 > pz, the flow is gravitationally unstable and when p1 < p,, the flow is 
gravitationally stable. We use the following exponential viscosity profile for most of 
our study: 

This profile is the same as that used by Tan & Homsy (1986) and other investigators 
(Yortsos & Zeybek 1988; Zimmerman & Homsy 1992; Rogerson & Meiburg 1993). It 
closely represents the ‘ quarter-power mixing rule ’ popularly employed by petroleum 
engineers (Tiffin & Kremesec 1986; Fayers & Newley 1988) to describe the 
viscosity-concentration relationship. 

When R > 0 the flow is viscously unstable and when R < 0 the flow is viscously 
stable. We further restrict our attention to downward displacements, i.e. flows with 
U > 0 in the coordinate system shown in figure 1.  We can confine our attention to 
downward displacements without loss of generality because for every upward 
displacement we can find an ‘equivalent’ downward displacement, so long as the 
density profile is linear. We establish this in the next section where we discuss at length 
the ‘equivalence’ between flows. 

p(c) = eR(1-c). (3) 

3.  Equivalent flows 
Two flow problems are said to be equivalent if the solution to one can be obtained 

from the other through simple transformations. The equivalence between flows not only 
reduces the number of flow configurations to be independently analysed but also helps 
understand the underlying differences between flow problems. We first examine the 
conditions under which a vertical displacement with density contrast is different from 
a horizontal displacement with neutrally buoyant fluids. 

In immiscible displacements it can be shown that all vertical flows have an equivalent 
horizontal flow (Tryggvason & Aref 1983). When the two fluids are miscible however, 
this is not always true. Tan (1987) in his analysis of miscible displacements showed that 
when the variation of fluid properties with concentration is small, the density-driven 
instability is analogous to the viscous-driven instability. What is the general criterion 
for a vertical displacement to be equivalent to a horizontal displacement? An 
examination of the right-hand side of (1 b) reveals that when the viscosity and the 
density profiles are linearly related, i.e. if p(c) = C, p(c) + C, for some constants C, and 
C,, then a vertical displacement with density contrast has an equivalent horizontal 
displacement and vice versa. 
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p = constant 

FIGURE 2.  (a) The vertical displacement has an equivalent horizontal displacement when the density 
and viscosity profiles are linearly related. (b) The downward displacement and the upward 
displacement are equivalent when the density profile is linear. 

When the viscosity and density profiles are both linear, a vertical displacement has 
an equivalent horizontal displacement. Consider the two displacements shown in figure 
2(a) - the vertical displacement where both the viscosity and density profiles are linear 
and the horizontal displacement with the same linear viscosity profile but with 
neutrally buoyant fluids. It is straightforward to show that the two flows are equivalent 
and the solution to the vertical displacement z1 (scaled with V,, = Apg/pl) can be 
obtained from those of the horizontal displacement h (scaled with U,) through the 
transformations uv = y+ U,, (4 a)  

U V ( X , Y ,  t> = y%&(yx, yy, r"), (4 b)  
ziv(X, y ,  t> = yuh(yX? 7Y> r")? (4 c) 
cv (X ,  y ,  t> = ch(yX, ?/y, r"), (4 d )  

P V ( ~ , ~ ,  '1 =Ph(YX,yy,?2t)+(-p2 U c + P Z ) X ,  (4 e) 
where y = p l  U,/Apg and U, = @, -p,)/@, -pJ,  pz =+ p l .  The solutions to the vertical 
displacements are scaled with the characteristic velocity V,, = Apg/pl while the 
solutions to the horizontal displacements are scaled with the injection velocity U,, and 
the scaling factor y is the ratio of the two velocities y = U,/ V,,. A vertical displacement 
with linear viscosity and density profiles and an injection velocity U ;  (prime indicates 
unscaled quantities) is equivalent to the horizontal displacement with the same linear 
viscosity profile and an injection velocity U, = U;-  U i  where Ui ,  as we will later see 
in 94.1, is the critical velocity when both the density and viscosity profiles are linear. 

In dilute solutions, the variations of fluid properties are small, so that they can be 
treated as linear and hence vertical displacements with such solutions are equivalent to 
the horizontal displacements with neutrally buoyant fluids. For most fluid pairs, the 
density profile is linear while the viscosity profile is nonlinear and consequently the 
vertical displacements are expected to be different from such horizontal displacements. 
The density contrast will have an effect on the flow when the injection velocity is such 
that pmin U/Apg 5 O(1) where pmin = rnin(p1,pz). According to our scaling, this 
condition amounts to U 5 O(1) when a = p2/pl > 1 and U 5 O ( l / a )  when a < 1, 
where U is the injection velocity scaled with V,,. 

When the density profile is linear, every upward displacement has an equivalent 
downward displacement and vice versa. Consider the two displacements shown in 



80 0. Manickam and G. M.  Homsy 

figure 2(b) -with the downward and upward displacements denoted by d, u. If 
the velocities are uniformly scaled with V,, = Apg/,uu, for the two problems, so that 
U, = - ud, pU,(c) = pd(l -c) and p,(c) = pd(c), then the solutions to the upward 
displacement can be obtained from those of the downward displacement through the 
following simple transformations : 

U U ( Z 7 Y >  4 = -d-X,Y, 0, 
uu(x,y? t, = ud(-x7y, l ) ,  

cu(x, Y ,  t )  = 1 - Cd( - x, Y, 0, 
PU(& Y ,  0 = P d (  - x, Y , 4 + x. 

( 5  a> 

( 5  b) 
(5  c) 

( 5  4 
The above transformations can easily be verified by substituting them into (1). When 
the two fluids are immiscible, the downward displacements always have an equivalent 
upward displacement (Tryggvason & Aref 1983) whereas when the two fluids are 
miscible, the equivalence holds only when the density profile is linear (or if the density 
profile is such that p(1 - c )  +p(c) = 1.) For fluid pairs with a nonlinear density- 
concentration relationship, upward displacements are not equivalent to downward 
displacements and the two cases need to be studied independently. Non-ideal density 
behaviour in the experiments of Tiffin & Kremesec (1986) resulted in upward 
displacements being significantly different from downward displacements. As we 
assume a linear density profile (2), it is sufficient to consider only the downward flows 
and the solutions to the upward displacements can be obtained using (5) .  

4. Linear stability analysis 
We begin our study by analysing the stability of vertical miscible displacements. We 

assume the porous medium to be of infinite extent in all directions and that at t = 0, 
the two fluids are separated by a sharp interface located at x = 0. The base state 
solutions to such flows in a coordinate system moving with the injection velocity are 

The base flow is time dependent and we follow the approach of Tan & Homsy (1986) 
by making a quasi-steady-state approximation. We assume that the perturbations grow 
or decay faster than the rate at which the base state changes, which allows us to freeze 
the base state solution (6) at time to and treat the flow as though it were steady. The 
initial value calculations of Tan & Homsy have validated this approach except for a 
short time when the base state changes rapidly. The governing equations (1) are 
perturbed and linearized and solutions of the following form are sought for the 
perturbations in concentration and velocity : 

(7) 
where CJ is the growth rate and k is the wavenumber of the perturbations. The flow is 
stable when Re(a) < 0 for all k and is unstable otherwise. The resulting eigenvalue 
problem is (Coskuner & Bentsen 1990; Bacri, Salin & Yortsos 1992) 

(c’2 u’) = (A?, A) exp (ikY + 4 t O )  0, 
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When the third dimension is included, the linear stability equations are still the same 
as (8) with k2 = ki  + k,2, where k, and k, are the wavenumbers of the perturbations in 
the y -  and z-directions respectively. The eigenvalue problem (8) is a fourth-order 
system with coefficients that vary with both space and frozen time to. Coskuner & 
Bensten (1990) solved the linear problem by assuming the coefficients of equation (8) 
to be constants. They argue that such approximations yield a local result, which they 
use to obtain a global stability condition. Bacri et al. (1992) derived an analytical 
solution at to = 0 when the two fluids are separated by a sharp interface, which is 
discussed in 54.1. 

The solutions to the eigensystem (8) have both a discrete and continuous eigenvalue 
spectrum. The discrete modes satisfy the decay conditions while the continuous modes 
remain bounded as x-tf co. The complete eigenvalue spectrum is discussed in 
Manickam & Homsy (1993) and Manickam (1994). The eigensystem (8) can be solved 
analytically for a step concentration profile, i.e. when to = 0. Asymptotic expansions 
are possible in the small-wavenumber limit (k + 1). For a finite to and k,  we resort to 
finite difference techniques to solve (8). We present the complete solutions to the 
eigensystem (8) in an infinite domain in the rest of this section. We first obtain the 
global stability criterion as a function of the frozen time to and later discuss the local 
stability of the flow. 

4.1. Analytical and asymptotic solutions 
The analytical and asymptotic solutions obtained by Manickam & Homsy (1993) for 
horizontal flows are easily extended to vertical flows by repeating their derivation with 
the gravity term in place. Their step profile result at to = 0 extended to the vertical flow 
gives the following expression for g(to = 0) (Bacri et al. 1992): 

(9) for A ,  > 0 : g(tO = 0)  = ;(A, k - k2 - k(k2 + 2A, k)1’2), 

where A,  = A( U -  U,) and 

The parameter A has the same definition as in Manickam and Homsy (1993) and U, 
is the ‘modified’ critical velocity. The sign of A,  = A(U-  U,) determines the stability 
of the flow, with stability when A(U-  U,) < 0 and instability when A(U-  U,) > 0. 
When the dependences of viscosity and density on concentration are linear, the critical 
velocity U, given by (9) reduces to that obtained by Hill (1952), namely U, = 

For flows with monotonic viscosity and density profiles, the step profile result 
implies that when both viscosity and density contrasts have a destabilizing effect (p, < 
,uz,pl > pz), the flow is unstable for all U > 0 and when they both have a stabilizing 
effect (pl > ,u2,p1 < pz), the flow is stable for all U > 0. The interesting combinations 
are those where the viscosity and density differences have opposite effects. From the 
stability criterion A(U-  U,) < 0 we see that when ,ul > ,u2 and p1 > p2 (pl < ,uz and 
p1 < pz), the flow is unstable (stable) when the injection velocity U is below the 
critical velocity U, and is stable (unstable) when the injection velocity exceeds the 
critical velocity. 

@z -P1>/C.z -P1). 
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The step profile result (9) accounts only for the endpoint properties. Further the 
quasi-steady-state approximation we have made is questionable at to = 0 when the base 
state changes rapidly. To understand the stability of the flow at a larger time to, we use 
the small-wavenumber expansion which is valid for all to. Hickernell & Yortsos (1986) 
obtained the small-k expansion of u in the absence of physical dispersion. Manickam 
& Homsy (1993) showed that physical dispersion in the transverse direction is not 
important in the small-wavenumber limit but dispersion in the longitudinal direction 
needs to be included in the analysis. Manickam & Homsy derived the first two non- 
trivial terms in the small-wavenumber expansion of u for horizontal flows. The small- 
k expansion involves expanding the eigensolutions in five different regions and 
matching them in the four overlap zones. Their results are easily extended to vertical 
flows by replacing dpldc and A in their solution with Udpldc-dpldc and A ,  = 
A(U-Uc)  respectively. We refer the reader to Manickam (1994) for details of the 
derivation and present here only the final result that is relevant to our discussion. The 
small-k expansion of the growth rate cr for A ,  > 0 is 

where 

and 

CT = +A, k - (1 + &) ($4v)1/2k3/2 + O(k2), 

The first term is independent of to and thus when A ,  = A( U -  U,) > 0 the flow that is 
unstable at to = 0 will continue to remain unstable at all times. Thus A ,  > 0 is a 
sufficient condition for the flow to be unstable. When A ,  < 0, there are no positive 
eigenvalues and the flow is stable in the small-wavenumber limit. But to establish that 
the flow is stable we need to examine all wavenumbers. The question still remains: will 
the flow that is stable at to = 0 remain stable at all times? In horizontal flows, 
Manickam & Homsy (1993) found that when p(c) is non-monotonic, the flows that are 
stable at to = 0 will eventually become unstable as the two fluids disperse into each 
other. It remains to be seen whether diffusion has a similar destabilizing effect on 
vertical flows with monotonic viscosity profiles. We solve the eigenvalue system (8) for 
a finite time to and a finite wavenumber k, using the standard finite difference method 
(Manickam 1994), to understand the effects of diffusion on the stability of the flow. 

4.2. Eflects of diflusion 
We consider a vertical displacement which is gravitationally unstable but viscously 
stable and illustrate the effects of diffusion on such flows through a specific example. 
We assume a linear density profile (2) with p1 > p2 and an exponential viscosity profile 
(3) with R = -3. For this combination of density and viscosity profiles, the modified 
critical velocity U, given by (9) is 0.635. The flow is stable when U > U, and is unstable 
when U < U,. We choose the three values 0.25, 0.635 and 2 for the injection velocity 
U so that U < U,, U = U, and U > U, for the three cases respectively. We solve the 
system of equations (8) numerically using finite difference techniques to obtain the 
dispersion relation g(k;t0) for each of the three cases. The results are presented in 
figure 3 (a-c). 

When U < U, (figure 3 a), the numerical solution agrees with the step solution (9) at 
to = 0. At to > 0, the two fluids disperse into each other and the instabilities are 
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FIGURE 3. The dispersion relation g(k) at various frozen time to for flows with p1 > pz, p, > p2 
and the three injection velocities (a) U = 0.25, (b) U = 0.635, (c)  U = 2. 

enhanced at short times and are mitigated at larger times. The flow is unstable at all 
times as predicted by the small-wavenumber expansion (10). When U > U, (figure 3 c) 
the flow is stable at to = 0 in agreement with the step profile result (9). But the flow 
remains stable only for a short time and as we see in figure 3(c) the flow has become 
unstable when to = 2. In figure 3(b), where U = U, we see a similar destabilizing effect 
of diffusion. 

The effects of diffusion seen in figure 3 (a-c) are reminiscent of the effects of diffusion 
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FIGURE 4. Critical velocity as a function of the frozen time to for the flow with a linear density 
profile @, > p,) and an exponential viscosity profile > pZ). 

in horizontal flows with non-monotonic viscosity profiles (Manickam & Homsy 1993). 
The unstable step profiles remain unstable at all times whereas the stable ones can 
become unstable as diffusion progresses. In general, diffusion is expected to mitigate 
the instabilities and the step profile analysis is considered as the worst case. This is an 
example where the step profile results are misleading and should be interpreted with 
caution. 

The fact that flows with U ,< U, (figure 3 b, c) that are stable at to = 0 become 
unstable at a later time to implies that the critical velocity U, is not a constant but varies 
with the frozen time to. We define the critical velocity at any given time to as that 
velocity beyond which a(k )  ,< 0 for all modes k 2 0. For the linear density profile (2) 
with p1 > p2 and an exponential viscosity profile (3) with R = - 3, the critical velocity 
as a function of the frozen time, U,(to), is numerically calculated and the result is shown 
in figure 4. For this combination of p(c) and p(c), A < 0 and from the asymptotic 
expansion (lo), we see that flows with U < Ue(to = 0) will remain unstable at all to and 
hence Uc(to = 0) is a lower bound on the critical velocity U,(to). It is not surprising then 
that the critical velocity increases with time to in figure 4. For flows that are 
gravitationally stable (p, < p2) and viscously unstable (p, < p2), Uc(to = 0)  is an upper 
bound and the critical velocity decreases with to. 

For horizontal displacements, Manickam & Homsy (1993) reported that when p(c) 
is non-monotonic, the displacements that are stable at short times will become unstable 
if diffusion acts on the flow for a sufficiently long time. When do stable vertical flows 
with monotonic viscosity and density profiles become unstable? We examine this issue 
next through the concept of local stability. 

4.3. Local stability 
When the two fluids disperse into each other, we can conceptually think of the diffused 
profile as being made of infinite number of infinitesimally small steps and apply the step 
profile result (9) to each of these infinitesimal steps. We define a local critical velocity 
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FIGURE 5. (a) The variation of local critical velocity u, with concentration c and (b) the spatial 
variation of the local critical velocity u,(x) under one-dimensional dispersion. A stable region, labelled 
S, is followed downstream by an unstable region, labelled U, if the injection velocity U is between the 
lower and upper limits of the local critical velocity. 

u, as the limiting value of the step profile critical velocity given in (9) when applied to 
each of the infinitesimally small steps: 

The local critical velocity u, depends only on the local composition of the fluid c. A 
direct comparison of the injection velocity and the local critical velocity will determine 
the regions that are potentially unstable and those that are potentially stable. The 
unstable regions are regions where U < u, if ap/ax > 0 and U > u, if t.p/ax < 0. The 
variation of the local critical velocity u, with concentration c is plotted in figure 5(a) 
for the flow with an unstable density contrast, Ap > 0, and an exponential viscosity 
profile with a favourable viscosity ratio a = pz/pl = 0.1. The corresponding spatial 
variation if the flow were to disperse in a one-dimensional fashion is shown in figure 
5(b). By comparing the local critical velocity with the injection velocity U we can 
demarcate regions that are locally stable from those that are locally unstable as 
indicated in figure 5(b). The situation is analogous to horizontal flows with non- 
monotonic viscosity profiles (Manickam & Homsy 1994) where the flow develops 
potentially unstable and stable regions adjacent to each other. 

When the flow is locally stable everywhere, it will remain stable at all times. On the 
other hand, if the flow is locally unstable in some region, then the flow will either 
always be unstable or will eventually become unstable if diffusion acts on the flow for 
a sufficiently long time. The stability criterion for downward displacements is as 
follows. When p1 > p2 and p1 > p2, the flow has the potential to become unstable when 
U < u,, and when p1 < pz and p1 < pz, the flow has the potential to become unstable 
when U > ucz, where u,, and ucz, are, respectively, the upper and lower bounds of the 
local critical velocity u,(c) defined in (1 1). The latter condition is identical to the 
stability criterion obtained by Dumore (1964) who referred to the lower limit of the 
local critical value as uSt = (dp/dp),,,. 

Dumore (1964) conducted experiments where a solvent is injected vertically 
downward in a porous medium saturated with a denser and more viscous oil. He 
observed the flow to become unstable when the injection exceeded the lower limit of 
the critical velocity, ucz. In general, uCz is far below the critical velocity obtained using 
a step profile analysis, Uc(to = 0) given in (9). It is interesting to note that Hill (1952), 



86 0. Manickam and G. M .  Homsy 

in his experiments with downward displacement flows, obtained favourable com- 
parisons between his experimentally obtained critical velocities and the corresponding 
step profile result. Hill used dilute solutions in his experiments for which the property 
variations are almost linear. When both density and viscosity profiles are linear, the 
critical velocity is independent of concentration, uc(c) = constant, and the upper and 
lower bounds on the critical velocity coincide with the step profile result, namely 
(p, -p,)/(’p, -pl ) .  This explains the good agreement between his experiments and the 
step profile result. 

When the flow evolves into the nonlinear regime, we can still identify regions that are 
potentially stable and regions that are potentially unstable by comparing the local total 
velocity, rather than the injection velocity, with the local critical velocity. This simple 
method to identify regions that are locally stable and locally unstable, though not 
strictly valid in the nonlinear regime, serves as a useful tool to interpret the dynamics 
of finger propagation. We use this method extensively in the next section where we 
examine through direct numerical simulations, the nonlinear evolution of fingering 
instabilities and the influence of locally stable zones on finger propagation. 

5. Numerical simulations 
We use a Hartley-transform-based (Bracewell 1984, 1986 ; Buneman 1987) pseudo- 

spectral method to numerically simulate the miscible displacement flow. The method 
is similar to that used by Zimmerman & Homsy (1991) and Manickam & Homsy 
(1994). A detailed description of the method is in Manickam (1994). Zimmerman & 
Homsy (1992) and Tchelepi et al. (1993) have shown that simulations in two 
dimensions capture all the essential physical mechanisms through which fingers 
propagate in a homogeneous three-dimensional porous medium with neutrally 
buoyant fluids. The averaged quantities exhibit the same behaviour in two-dimensional 
and three-dimensional simulations. These findings are applicable to vertical displace- 
ments so long as the injection velocity is aligned with the direction of gravity. We carry 
out our simulations in two dimensions with the expectation that the results for 
averaged quantities will not be different when the third dimension is included as well. 
It should be noted, however, that when the fluid is injected at an angle to the direction 
of gravity, the two-dimensional results will be different from the three-dimensional 
results (Tchelepi & Orr 1993). 

A schematic of the computational domain used in our simulations is shown in figure 
1. The velocity, length and time are scaled with &,, D/& and D/V,2, respectively, 
where V,, = Apg/,uc,, unless otherwise stated. As before we work in a coordinate system 
moving with the injection velocity U. The non-dimensionalized width of the 
computational domain takes the form of a PCclet number Pe = H & / D  and the aspect 
ratio of the domain is A = L / H .  All our computations are carried out on the CRAY 
Y-MP. The typical mesh sizes we use are 128 x 128 and 256 x 256. The execution time 
varies depending on the problem and ranges between a few CPU minutes and about 
1 CPU hour on the CRAY Y-MP. 

5.1. Gravitational$ngers 
We first simulate the evolution of fingers driven solely by density differences and 
compare the results with the experiments of Wooding (1969). We use the simulation 
results to validate our code and also to understand the underlying differences, if any, 
between gravitational fingers and viscous fingers. Wooding (1969) observed the growth 
of fingers at the diffusing interface between two fluids that have the same viscosity 
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FIGURE 6. Simulation of fingers driven solely by density contrasts. The concentration field at various 
times are shown as grey-scale plots with the heavier fluid coloured black and the lighter fluid coloured 
white. The width of the computational domain is Pe = V,, H I D  = 5000 and the aspect ratio is A = 2. 

&(c) = constant) and a linear density profile > pz) in a Hele-Shaw cell. If we assume 
a constant isotropic dispersion then the only parameter of the problem is the width of the 
experimental cell Pe. If Pe is large enough so that the boundary effects are small, then 
the problem is parameterless and the averaged quantities like the mixing lengths are 
largely independent of Pe (Tan & Homsy 1988). In the Hele-Shaw cells of Wooding’s 
experiment, the dispersion is anisotropic due to Taylor dispersion, especially when the 
characteristic velocity of the flow is high. However there is ample evidence in the work 
of Zimmerman & Homsy (1991) to suggest that some of the averaged quantities like 
the asymptotic growth rates of the mixing zones are not only independent of Pe but 
also of any anisotropy in the flow. Thus to compare our simulation results with 
Wooding’s experiments, it is sufficient to simulate with a much lower Pe than the actual 
experiments and assume a constant isotropic dispersion. 

We simulate a flow with constant viscosity, driven solely by an unstable density 
stratification in a computational domain of width Pe = 5000. The results of the 
simulations are presented in figure 6. The simulations are with a much smaller cell 
width and for a much shorter time than the experiments of Wooding. However, the 
finger patterns in figure 6 are strikingly similar to those seen in the experiments of 
Wooding (figure 2 b in Wooding 1969). We observe the nonlinear fingering mechanisms 
of spreading, shielding, coalescence, and tipsplitting described by Tan & Homsy 
(1988), at both ends of the fingered zone. The feature that is noteworthy is that the 
density-driven fingers, unlike their viscosity-driven counterparts, have no preferred 
direction of propagation. When the density profile is linear, the lighter fluid rises into 
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the heavier fluid as rapidly and through the same fingering mechanisms as the heavier 
fluid sinks into the lighter fluid. The updown symmetry of the fingering instabilities 
in the absence of viscosity contrast was noted by Tryggvason & Aref (1983) for 
immiscible displacements. That the gravitational fingers propagate at the same rate in 
either direction is not very surprising in light of our discussions of equivalent flows in 
83. If we start our simulations shown in figure 6 with u( -x, y ,  t = 0 )  instead of u(x, y ,  
t = 0),  then we would obtain the exact mirror image of the concentration fields shown 
in figure 6, i.e. 1 - c( -x, y ,  t).  This can easily be verified from the governing equations 
(1) when U = 0, p(c) = constant and the density profile is linear (more generally when 
U=O,p(l-c)=p(c)  andp(1-c)+p(c)= 1). 

Wooding (1969) has measured the mean wavelength and the mean amplitude of the 
fingers at various times t in his experiments. His measurements of mean wavelengths 
asymptote to - t'/' while those of mean amplitudes asymptote to - t. The only 
meaningful quantitative comparisons we can make are with these asymptotic variations 
in time. Wooding obtained the mean amplitude by measuring the crest to trough 
distance from photographs of the Hele-Shaw cell at various times and the mean 
wavelength by visually counting the number of fingers (the average of the number of 
crests and troughs) and dividing the width of the cell by it. We compare our simulation 
results against these two measurements. 

Wooding reported that one half of the mean crest to trough amplitude Z,, when 
scaled with the diffusion coefficient and a characteristic velocity, asymptotes to 0.442t. 
Noting that the characteristic velocity used by Wooding is one-half of the characteristic 
velocity we use, the mean crest to trough amplitude (22,) from Wooding's experiment 
when scaled with V,, = Apg/pl  asymptotes to a rate of 0.442. The mean crest to trough 
amplitude is a measure of the length of the fingered zone and its growth is similar to 
that of the mixing length, defined as the distance in which the transversely averaged 
concentration varies from 95% to 5 % .  The mixing lengths obtained from our 
simulations asymptote to a growth rate of M 0.5, which compares favourably with the 
experimental value of 0.442. The mean wavelength, A, in Wooding's experiment when 
scaled with the characteristic velocity and transverse diffusivity asymptotes to h/2x  - 
1.2t"'. We find the mean wavelength from our simulation results using the method 
described by Zimmerman & Homsy (1991) and Zimmerman (1991). We first obtain the 
power spectrum of the longitudinally averaged concentration profile and take the mean 
wavelength to be the inverse of the power-averaged wavenumber. The mean 
wavelengths A/2x obtained from our simulations using the above method do not 
asymptote to a linear function in t'/' but a least-square fit through the wavelengths 
closely follows the curve M 1 .Ot'/', which agrees with the experimental results to within 
20 %. Both the qualitative and quantitative features of our simulations compare 
favourably with those of Wooding's experiments. 

5.2. Fingering with both viscosity and density contrasts 
We study the effects of combined viscosity and density contrasts on the nonlinear 
evolution of the fingering instabilities. When both viscosity and density differences 
have a stabilizing effect on the flow, the flow is always stable. When they both act to 
destabilize, the flow is always unstable and the resulting fingers are qualitatively not 
very different from those driven solely by viscosity contrasts. The interesting cases are 
when the viscosity and density contrasts have opposite effects. In such cases, we can 
have regions that are locally stable followed downstream by regions that are locally 
unstable or vice versa. We confine our attention to the following two cases: (i) viscous 
stabilization of gravitational fingers and (ii) gravitational stabilization of viscous 
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FIGURE 7. Viscous stabilization of gravitational fingers: (a) injection velocity U = 1, (6) injection 
velocity U = 0. The stabilizing viscosity contrast not only reduces the growth of fingers but also 
changes the direction of finger propagation. The concentration fields at various times are shown as 
contour plots with the contours spanning from c = 0.9 to 0.1 in six equal increments. The fluid 
pair has an exponential viscosity dependence with a = pJpI = 0.1 and for both simulations Pe = 
& H / D  = 1000, A = 2. 

fingers. The nonlinear finger propagation in these cases are presented in the rest of this 
section. 

5.2.1. Viscous stabilization of gravitational jingers 
The gravitational fingers shown in figure 6 can be stabilized through viscous forces 

by introducing a favourable viscosity contrast to the flow. A more viscous and heavier 
fluid is injected from the top to displace a less viscous and lighter fluid from the bottom. 
We consider the displacement with an unstable density contrast, Ap > 0 and a 
favourable viscosity ratio, a = 0.1. For this choice of density and viscosity contrasts, 
the local critical velocity as a function of concentration and its spatial variation under 
one-dimensional dispersion are shown in figure 5. The flow develops an upstream 
stable zone and a downstream unstable zone when the injection velocity is between the 
upper and lower bounds of the local critical velocity uc(c), as indicated in figure 5. We 
simulate the flow with an injection velocity U =  1, which is between the lower and 
upper bounds of the local critical velocity. The results of the simulation are shown in 
figure 7 (a)  as concentration contours at various times. The concentration contours 
span from c = 0.9 to 0.1 in equal increments. For comparison, the propagation of 
fingers for the same viscosity and density profiles but with zero injection velocity is 
shown in figure 7(b) .  
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FIGURE 8. Growth of mixing lengths with time for the flow with injection velocity (a) U = 1 and 
(b) U = 0. The viscosity profile is exponential with cz = ,u2/,ul = 10. 

When the injection velocity is zero, the flow is locally unstable everywhere and the 
fingers propagate as rapidly in either direction (figure 7b).  Along an upward moving 
finger, low-viscosity fluid displaces high-viscosity fluid which results in steep 
concentration gradients and the fingers undergo tipsplitting secondary instabilities. 
When the fluid is injected downward with a velocity U = 1, the stabilizing viscous 
forces not only reduce the finger growth but also change the direction of finger 
propagation. The upstream stable zone acts as a barrier to finger propagation in the 
upward direction and the viscosity-stabilized gravitational fingers propagate pre- 
dominantly in the downward direction as seen in figure 7(a). In the first three frames 
of figure 7(a),  the c = 0.9 concentration contours (lowest contour in each frame) are 
highly contorted whereas the c = 0.1 concentration contours (highest contours in each 
frame) are hardly perturbed. At larger times, the fingers penetrate the stable zone but 
their growth is still restricted. 

The streamwise growth of the fingers can be quantitatively characterized through 
mixing lengths. We use the integral definitions of Manickam & Homsy (1994) to define 
a forward (Lf;), a reverse (L;) and a total (LA) mixing length: 

J o  / J o  

LA = Lf; -k L;, 

where x,, is the initial location of the interface and all measurements are in a reference 
frame moving with the injection velocity. The forward mixing length is a measure of 
the extent to which the displacing fluid has penetrated the displaced fluid while the 
reverse mixing length is a measure of the extent to which the displaced fluid has 
penetrated the displacing fluid. For the two sets of simulations shown in figure 7 ,  the 
mixing lengths are plotted against time in figure 8. When the injection velocity is zero, 
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FIGURE 9. The dependence of mixing lengths on injection velocity for the gravitationally unstable but 
viscously stable flows. The density profiles are linear and the viscosity profiles are exponential with 
endpoint viscosity ratios (a) a = 0.2, (b)  a = 0.1, ( c )  a = 0.05. The lower limit of the local critical 
velocity is indicated by dashed lines in each plot. To the right of the dashed lines, the flow develops 
stable regions followed downstream by unstable regions. 

the forward mixing length L,f is approximately equal to the reverse mixing length L; 
(figure 8b). When U = 1, the stabilizing viscous forces reduce the growth of mixing 
lengths in both the directions and the forward mixing length is always greater than the 
reverse mixing length. 

In all our simulations, the time derivatives of the mixing lengths asymptote to 
nearly a constant. This allows us to define asymptotic mixing rates in the forward 
direction Ll, and in the reverse direction L; as the asymptotic values of the time 
derivatives of L,f and L; respectively. We define a total asymptotic mixing rate LA = 
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FIGURE 10. (a) The variation of local critical velocity u, with concentration c for an unstable 
exponential viscosity profile with a = 10 and a stable density stratification. (b) The corresponding 
spatial variation of the local critical velocity u,(x) under one-dimensional dispersion. The region 
marked S where U > u, is potentially stable and the region marked U where U < u, is potentially 
unstable. 

Li + L;, which (scaled with V,,) when extracted from figure 8(b) for the U = 0 case is 
1.83, and the ratio of forward to reverse mixing rates, Li/L; z 1. When stabilizing 
viscous forces are introduced by injecting at U = 1, the total asymptotic mixing rate is 
reduced by a factor of 4 and the ratio of forward to reverse mixing rates, L:/L; z 2.5. 
The updown symmetry of the density-driven fingers is destroyed by the upstream 
stable barrier and the fingers propagate preferentially in the downward direction. 

To further understand the effects of stabilizing viscous forces on the density-driven 
fingers, we parametrically study the dependence of the mixing rates with injection 
velocity. We choose the three favourable viscosity ratios, a = 0.2, 0.1, 0.05, and 
simulate the flow at various injection velocities. The asymptotic mixing rates are 
extracted from each of these simulations and are plotted against injection velocity in 
figure 9(a-c) for the three viscosity ratios chosen. In each of the plots, the dashed line 
indicates the lower bound of the local critical velocity uCL at injection velocities beyond 
which the flow develops locally stable regions. 

For all three viscosity ratios considered, the finger patterns exhibits updown 
symmetry when the injection velocity U is close to zero, with Li z L; z LJ2 .  When 
U > uC1, the symmetry is destroyed and fingers propagate at a higher rate in the 
downstream direction than in the upstream direction, as evidenced by unequal values 
of L,' and L:. The locally stable region on the upstream direction is effective in altering 
the direction of finger propagation, especially at high viscosity contrasts (a = 0.05 in 
figure 9) .  As the injection velocity is increased, the finger propagation is further skewed 
to the downstream direction. When the injection velocity approaches the upper bound 
of the local critical velocity, ucu, the flow is stabilized and the growth of the mixing 
zones is controlled by dispersive rather than convective forces which again results in 
equal growth rate in either direction. Thus the ratio of forward to reverse mixing rates, 
Li/L;, a measure of the asymmetry in the finger propagation, is highest at some 
intermediate values of the injection velocity U,  between the lower and upper bounds 
of the critical velocity. The flow is completely stabilized when the injection velocity 
exceeds the upper bound of the critical velocity. 
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FIGURE 11. Viscous fingering in the presence and absence of stabilizing density effects: (a) stable 
density contrast Apg/,uu, U = -4, (b) neutrally buoyant fluids Ap = 0. The viscosity profile is 
exponential with a = ,uu2/puI = 10. The concentration fields at various times are shown as contour 
plots with the contours spanning from c = 0.9 to 0.1 in six equal increments. The velocities, lengths 
and time are scaled with the injection velocity U ,  D / U  and D / U 2  respectively. For both the 
simulations, Pe = U H / D  = 1500 and A = 2. 

5.2.2. Gravitational stabilization of viscous Jingers 
We next consider the case where a less-viscous and lighter fluid is injected from the 

top to displace a more-viscous and heavier fluid from the bottom. When the injection 
velocity exceeds the lower bound of the critical velocity, the flow will become unstable. 
The viscous fingers that develop are stabilized by the density stratification in the flow. 
We choose the exponential viscosity profile (3) with an unfavourable viscosity ratio 
a. = p2/p1 = 10 and a stable density contrast Ap < 0. For this combination of viscosity 
and density profiles, the variation of the local critical velocity with concentration and 
the streamwise spatial variation under one-dimensional conditions are shown in figure 
10. 

The flow is potentially unstable in regions where U > u, and is potentially stable in 
regions where U < u,. We simulate the flow with an injection velocity of U = 0.25 
which, as shown in figure 10, is between the upper and lower bounds of the critical 
velocity and the flow develops a potentially stable region at the upstream end and a 
potentially unstable region at the downstream end of the transition zone. The results 
of the simulation are shown in figure 11 (a) as snapshots of the concentration field at 
various times. In figure 11 (b), the evolution of viscous fingers with neutrally buoyant 
fluids are shown for comparison. The gravity-stabilized flow shown in figure 11 (a) is 
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FIGURE 12. Growth of mixing lengths with time for the flow (a) with a stabilizing density stratification 
Apg/pL, U = -4, and (b) with neutrally buoyant fluids. The viscosity profile is exponential with a = 

tL2IPl = 10. 

scaled with the injection velocity U, instead of with the characteristic velocity P&, in 
order to aid a direct comparison with the neutrally buoyant case shown in figure 11 (a). 
According to this scaling, the density contrast is Apglp, U = -4 and the length and 
time scales are D /  U and D/ U 2  respectively. 

When the two fluids are neutrally buoyant (figure 1 1  b), the instabilities develop into 
viscous fingers that readily undergo the nonlinear mechanisms (Tan & Homsy 1988) of 
spreading, shielding, coalescence and tipsplitting. When a stabilizing density 
stratification is added to the flow, the above mentioned fingering mechanisms are either 
suppressed or delayed in time. The upstream stable region curtails the reverse flow and 
the fingers propagate preferentially in the forward direction. The mixing lengths are 
plotted against time in figure 12 for the two simulations shown in figure 1 1 .  The density 
stratification has considerably reduced the growth of the mixing zones. The stabilizing 
buoyancy forces reduce the net force available to drive the fingers which results in a 
reduced rate of finger propagation. The viscous fingers with neutrally buoyant fluids 
(figure 12b) propagate primarily in the forward direction, with LA' > L; at all times. 
When a stable density contrast is added to the flow (figure 12a), the presence of the 
upstream locally stable region further restricts the growth of the reverse mixing length. 

We next parametrically study the effects of density contrasts on the viscous fingering 
instabilities. We choose the three unfavourable viscosity ratios a = 5, 10 and 20 and 
simulate the displacement process with fluids of varying density contrasts. The 
asymptotic mixing rates obtained from each of the simulations are plotted against 
density contrasts in figure 13(a-c) for the three viscosity ratios. To the left of the 
dashed lines in each of the plots, the flow develops locally stable regions at the 
upstream end of the transition zone. 

At low viscosity ratio a = 5 (figure 13 a), the stable and unstable zones are relatively 
weak and the flow is stabilized with moderate density contrasts (Apg/pU < -4). The 
locally stable regions are not as effective in altering the direction of finger propagation 
as they are at high viscosity ratios. At higher viscosity ratios, the locally stable regions 
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FIGURE 13. The dependence of mixing lengths on density difference for the viscously unstable but 
gravitationally stable flows. The density profiles are linear and the viscosity profiles are exponential 
with endpoint viscosity ratios (a) a = 5 ,  (b) a = 10, (c)  a = 20. To the left of the dashed lines, the flow 
develops stable zones followed downstream by unstable zones. 

restrict the reverse flow and increase the asymmetry in the direction of finger 
propagation. This is seen as an increase in the ratio of forward to reverse mixing rates, 
Li/L;, to the left of the dashed lines in figures 13(b) and 13(c). When a = 20 (figure 
13 c), low density contrasts do not have any effect on the flow and it takes a much larger 
density contrast to completely stabilize the flow. 

5.3. Reverse fingering 
In our study thus far, the flow develops a locally stable zone at the upstream end of the 
transition zone. If the stable region is located at the downstream end, then the fingers 
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FIGURE 14. The two viscosity profiles ,d = exp (R( 1 - c)) and = 1 +a -exp (Rc) are compared 
for a viscosity ratio CL = 10. 

would propagate preferentially in the reverse direction as they encounter a stable 
barrier in the forward direction, leading to the potential for 'reverse' fingering. 
Manickam & Homsy (1994) observed reverse fingering, where the displaced fluid 
penetrates the displacing fluid more readily than vice versa, in flows with spatially non- 
monotonic viscosity variations. Rogerson & Meiberg (1993) observed the same 
phenomena, which they referred to as 'backward ' fingering, in vertical displacements 
with nonlinear density profiles. We can achieve a locally stable zone at the downstream 
end in vertical displacements by suitably choosing the viscosity profile. We use the 
linear density profile (2) as before, to be consistent with the incompressibility equation 
(1 a), but choose the viscosity profile 

P -  'I - 1 +a-eRc, (13) 
where a is the endpoint viscosity ratio and is related to the constant R through R = 

In a .  The viscosity concentration relationships p" given in (1 3) and p' given in (3) are 
compared in figure 14 for a viscosity ratio a = 10. The derivatives of the two profiles 
with respect to concentration are related through ~ ' ' ( c )  = ~ " ' ( 1  -c) and the local 
critical velocities obtained with two profiles for the same density stratification are 
similarly related through u,(c;p') = u,(l - c;~''). The upstream stable zones and the 
downstream unstable zones shown in figure 5 for flows with PI, switch places when p' 
is replaced with PI', as illustrated in figure 15 (a). 

The locally stable zone has the potential to act as a barrier to finger propagation in 
the downstream direction and the situation is conducive to reverse fingering. The 
strength and position of the stable region changes as the total local velocity changes in 
the flow, which leads to interesting flow dynamics. We demonstrate the phenomenon 
of reverse fingering in vertical displacements through two illustrative cases : (i) where 
the density-driven fingers are stabilized by viscous forces and (ii) where the viscous 
fingers are stabilized by density stratifications. 
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FIGURE 15. Reverse fingering in density-driven displacements (Ap  > 0). The viscosity<oncentration 
relationship is given in equation (13) with a = 0.1. (a) Variation of local critical velocity with 
concentration and streamwise distance for the flow. (b) The concentration field at various times shows 
the finger propagation. The contours shown span from c = 0.9 to 0.1 in equal increments. The 
horizontal line in the last frame shows the initial location of the interface. The simulations are with 
Pe = V,, H I D  = 1000, A = 2. 

We first simulate the case where a denser and less-viscous fluid is above a lighter and 
more-viscous fluid. We choose the linear density profile (2) with Ap > 0 and the 
exponential viscosity profile (1 3) with a favourable viscosity ratio a = 0.1 and a zero 
injection velocity. The variations of local critical velocity with concentration and 
streamwise distance under one-dimensional conditions is shown in figure 15(a). The 
flow is locally stable in regions where the local total velocity exceeds the local critical 
velocity and is locally unstable in regions where the local total velocity is below the 
local critical velocity. The results of the simulation with zero injection velocity is 
presented in figure 15(b) as concentration contours at various times. 

When the injection velocity is zero, the flow is locally unstable everywhere and the 
resulting finger patterns exhibit the characteristic updown symmetry of density-driven 
flows, as seen at t = 300 and 600 in figure 15(b). As the flow evolves, the local total 
velocity increases and in some regions the local velocity exceeds the local critical 
velocity. Thus some fingers moving downward (u > 0) encounter a stable barrier (as 
indicated in figure 15a) at the tip whereas the fingers moving upward (u < 0) propagate 
with relative ease. The net result is that the upward moving fingers move faster than 
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FIGURE 16. Growth of mixing lengths for the density-driven displacement with a stable viscosity 
contrast. The density profile is linear and the viscosity profile is given by equation (13) with a = 0.1. 
At short times, the forward and the reverse mixing lengths grow at more or less the same rate but at 
later times the reverse mixing length grows at a higher rate than the forward mixing length. 

their downward moving counterparts, leading to ‘reverse’ fingering. The initial 
symmetry in the direction of finger propagation and the subsequent reverse fingering 
are apparent in the mixing length versus time plot shown in figure 16. The forward (LA+) 
and the reverse (Lh) mixing lengths grow at the same rate until about t = 800, after 
which the reverse mixing length grows at a faster rate than the forward mixing length. 

Similar to the density-driven flows, we can obtain reverse fingering in viscosity- 
driven instabilities. An illustrative case is shown in figure 17 where a less-viscous and 
lighter fluid is injected from the top to displace a more-viscous and heavier fluid. The 
viscosity varies with concentration according to (13) with a viscosity ratio a = 10. The 
variation of local critical velocity with concentration and streamwise distance under 
one-dimensional dispersion is shown in figure 17(a). We simulate the flow with an 
injection velocity U = 0.25 and, as indicated in figure 17(a), the flow develops a locally 
stable region on the downstream side. The fingering instabilities are initiated in the 
unstable region and, owing to the stable barrier in the forward direction, they 
propagate preferentially in the reverse direction. However, as the local velocity 
increases, the downstream stable barrier becomes weaker and if the local velocity is 
high enough, a finger can ‘penetrate’ the stable barrier. One such instance is seen at 
t = 1600 in the simulations shown in figure 17(b). The local total velocity at which one 
of the fingers propagates approaches the upper limit of the local critical velocity, ucu, 
and the finger penetrates the stable zone and propagates faster than the rest of the 
fingers. The mixing length versus time plot for the flow is shown in figure 18. Reverse 
fingering is evident from the plot as Lh > LA+ at all times. The forward mixing length, 
LA+, grows at a slow rate until t w 1200, after which a finger breaks free and is reflected 
as a higher growth rate in LA+. 

The simulations shown in figures 15 and 17 demonstrate that reverse fingering can 
occur in vertical displacements with monotonic viscosity and density profiles, similar 
to what Manickam & Homsy (1994) obtained in horizontal displacements with non- 
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FIGURE 17. Reverse fingering in viscously unstable displacements with a stable density stratification. 
(a = 10 and Ap < 0.) (a) Variation of local critical velocity with concentration and streamwise 
distance. (b) The finger patterns show reverse fingering and the penetration of a finger through the 
stable barrier. The concentration contours shown span from c = 0.9 to 0.1 in equal increments. The 
horizontal line in the last frame shows the initial location of the interface. The simulations are with 
Pe = V,, H I D  = 1000, A = 2.  

monotonic viscosity profiles. In vertical flows, the strength and position of the stable 
barrier changes as the flow evolves which leads to more complex finger propagation 
than in horizontal flows. 

6. Concluding remarks 
We have analysed vertical miscible displacement flows with monotonic viscosity and 

density profiles using linear stability analysis and numerical simulations. The presence 
of density stratification can introduce regions that are locally stable, strikingly similar 
to horizontal flows with non-monotonic viscosity profiles. We have defined a local 
critical velocity and by comparing the local velocity field with the local critical velocity, 
the regions that are potentially stable and those that are potentially unstable can be 
identified. This simple method of identifying regions where the flow is potentially stable 
and unstable is very useful in interpreting the flow dynamics. 

We have established that for a linear density profile, the displacements against the 
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FIGURE 18. Mixing lengths plotted against time for the flow with a viscosity profile given by equation 
(13) with a = 10 and a stable linear density profile. At short times, the growth in the forward direction 
is restricted by the stable barrier but once a finger penetrates the stable barrier, the forward mixing 
length grows at a higher rate. 

direction of gravity are equivalent to the displacements along the direction of gravity 
and when both the viscosity and density profiles are linear, the vertical displacements 
are no different from the horizontal displacements. Our linear analysis shows that flows 
under gravity that are predicted to be stable by the step profile analysis can become 
unstable as the base state diffuses out. This is an example where diffusion can act to 
destabilize the flow and the step profile results are potentially misleading. The critical 
velocity obtained using the step profile analysis changes as the two fluids disperse into 
each other. 

We have simulated the vertical displacement flow in two dimensions using a Hartley- 
transform-based spectral method and compared our simulation results with the 
experiments of Wooding (1969). The growth rates of the fingered zones and the finger 
widths obtained from our simulations agree to within 20% of the corresponding 
experimental measurements. When the density profile is linear, the fingering instabilities 
driven solely by density contrasts have no preferred direction of propagation. The 
fingers propagate at the same rate and through the same mechanisms at either end of 
the fingered zone. When a viscosity contrast is added to the flow, locally stable regions 
can be introduced by suitably choosing the viscosity profile and injection velocity. We 
have parametrically studied the effects of the stable zones on finger propagation for the 
class of flows where the stable regions develop at the upstream end of the transition 
zone. The locally stable zones act as effective barriers to reverse flow and the fingers 
propagate preferentially in the forward direction. The effects are more pronounced at 
high viscosity ratios than at low visosity ratios. Through a proper choice of viscosity 
profile and injection velocity, not only the rate of finger propagation but also the 
direction of finger propagation can be altered. 

We have demonstrated through illustrative examples, the phenomenon of reverse 
fingering, where the displaced fluid fingers through the displacing fluid more easily than 
vice versa, by introducing a potentially stable region at the downstream end of the 
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transition zone. The position and strength of the stable zone changes as the flow 
evolves, leading to interesting finger propagation where some fingers encounter stable 
barriers while others propagate with relative ease. 
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